NIF: Net (Scientific) Gain Achieved in Inertial Fusion! What is the impact on PFRC?

The internet was abuzz last week with the news that the National Ignition Facility had achieved that elusive goal: a fusion experiment that achieved net (scientific) energy gain. This facility, which uses 192 lasers to compress a peppercorn-sized pellet of deuterium and tritium, released 3 MJ of energy from 2 MJ of input heat.

We have to use the caveat that this is “scientific” gain because it does not account for the total amount of energy needed to make the laser pulse. As a matter of fact, the lasers require 400 MJ to make those 2 MJ that reach the plasma. If we account for this energy, we can call it the “wall plug” gain or “engineering” gain since it includes all the components needed. This gain for laser-induced fusion is still less than 1%, because the lasers are very inefficient.

Nonetheless, this is great news for all fusion researchers. Since we often get asked: Has anyone achieved net (scientific) gain yet? Now we can say: Yes! It is physically possible to release net energy from a fusing plasma, to get more energy output than direct energy input. This advance has been achieved through various new technology: machine learning to select the best fuel pellets, wringing more energy from the lasers, more exact control over the laser focusing. Modern technology, especially computing for predicting plasma behavior, explains why progress in fusion energy development is now accelerating.

Tokamaks have also come close to net gain, and in fact the JT-60 tokamak achieved conditions that could have produced net gain, if it had used tritium [1].

The reason JT-60 did not use tritium in those shots is very relevant to our fusion approach, the PFRC. Tritium is radioactive, rare, expensive to handle, and releases damaging neutrons during fusion. Tritium is also part of the easiest fusion reaction to achieve in terms of plasma temperature, the deuterium-tritium reaction. It makes sense for fusion experiments to use such a reaction, but this reaction presents many difficulties to a future working power reactor.

The PFRC is being designed to burn deuterium with helium-3, rather than with tritium, precisely to make the engineering of a reactor easier. The deuterium-helium-3 reaction releases no neutrons directly. Some deuterium will fuse with other deuterium to produce neutrons and tritium, but the PFRC is small enough easily expel tritium ash. This results in orders of magnitude less neutrons per square meter reaching the walls. Once we have scientific gain, like the NIF has now demonstrated for laser fusion, we have an easier path to engineering gain — that is, net electricity.

So while the laser fusion milestone doesn’t directly impact our work on the PFRC, it is important to the field. We will continue to follow the progress of all our peers as we work to achieve higher plasma temperatures in our own experiments!

[1] T. Fujita, et al. “High performance experiments in JT-60U reversed shear discharges,” Nuclear Fusion 39 1627 (1999). DOI: 10.1088/0029-5515/39/11Y/302