Blog Posts

FIA Proposes Funding Fusion for Space Propulsion

The Space subcommittee of the Fusion Industry Association, of which we are a member, has prepared a new white paper recommending government funding for a fusion propulsion development program, styled similarly to ARPA-E and DARPA.

https://www.fusionindustryassociation.org/post/fia-proposes-funding-for-fusion-for-space-propulsion

The goal is to provide funding not just for “paper studies,” but enough funding to build real hardware and start to test fusion propulsion concepts. We want the US to remain competitive in the upcoming Deep Space Race – building a human presence on the Moon, and then Mars, and beyond.

The PFRC is directly applicable, configured as Direct Fusion Drive – a variable thrust, variable specific impulse rocket in the 1 to 10 MW range. With sufficient funding, we could build a PFRC-3 to test a fully superconducting configuration’s ability to achieve fusion-relevant plasma temperatures, and a separate propulsion testbed to develop the thrust augmentation system. This is the actual mechanism to transfer the energy from the fusion products to a rocket propellant – a fusion reactor is not a rocket until you have accelerated a propellant! For more on the Direct Fusion Drive, see our related videos:

ASCENDx

As a follow-up to the TriAgency workshop on Compact Fusion which took place on April 28, PFS was invited to join several Fusion Industry Association members on an AIAA ASCENDx summit on June 15, “Accelerating Pathways to Space”:

Our panel on “New Opportunities in Fusion for Space Power and Propulsion” was moderated by Julie Reiss of Aerospace Corp and included us, Helicity Space, NearStar Fusion, and Tokamak Energy. You can register to rewatch our panel discussion anytime!

A key takeaway from the TriAgency workshop was that investment in compact fusion is strategic for both space and defense applications. NASA’s Ron Litchford was quoted as saying:

Compact fusion stands as a well deserving candidate for an aggressive whole-of-government R&D initiative.

Ron Litchford, Principal Technologist of NASA’s Game Changing Development Program, April 2021

We appreciated the opportunity to participate in the panel and will continue to advocate for more investment in compact fusion!

Thomson scattering

Thomson scattering is the industry standard diagnostic for measuring electron temperature, typically requiring, large, expensive, custom lasers. We are fortunate that ARPA-E has funded a team from Oakridge National Laboratory to build a portable Thomson system from commercial parts, and they are now installing and calibrating the diagnostic on the PFRC-2!

These measurements will give us critical insight on the plasma temperatures we are achieving with RMFo as a function of input power!

The ARPA-E Energy Summit May 24-27

Princeton Fusion Systems will have two booths at the virtual ARPA-E Energy Innovation Summit on May 24-27. One will be for our ARPA-E OPEN 2018 grant and the other for our recent awarded GAMOW power electronics grant. We’ll be at our booths, along with our team members from the National Renewable Energy Laboratory, PPPL, United SiC and Princeton University, from 1:15 to 2:30 on Monday, 3:45 to 5:00 on Tuesday and 2:30 to 4:00 on Wednesday. Please come by to talk!

We’ll also be doing a Tech Demo: Next-Generation PFRC on Monday, May 24, 2021 2:05 p.m. – 2:15 p.m.​​​​​​​ You’ll find out about our innovative compact nuclear fusion reactor work.

The Summit will have all sorts of cutting edge technology from ARPA-E companies. There will be many interesting speakers including Secretary Jennifer Granholm and Secretary Pete Buttigieg. The Summit will also include breakout sections where you can meet other attendees.

The ARPA-E Summit is the energy event of the year. Don’t miss out!

Princeton Fusion Systems Awarded $1.1 Million from ARPA-E for Transformational Energy Technology

Princeton Fusion Systems announced today that it was awarded $1.1 million in funding from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E). The funding will be used to develop advanced power electronics for the heating and control of fusion plasmas.

Princeton Fusion Systems received this competitive award from ARPA-E’s Galvanizing Advances in Market-aligned fusion for an Overabundance of Watts (GAMOW) program, working to close multiple fusion-specific technological gaps that will be needed to connect a net-energy-gain “fusion core,” once it is ready, to a deployable, commercially attractive fusion system. Princeton Fusion Systems joins 13 other teams in the $29M GAMOW program.

The team consists of Princeton Fusion Systems, Princeton University, the National Renewable Energy Laboratory and United Silicon Carbide. Over the 30 month duration of the contract, the team will develop efficient, high-power electrical drivers for plasma heating, compression, and control. Wide-bandgap (WBG) semiconductor devices and innovative amplifiers may speed up the development of fusion systems and reduce their eventual cost of electricity. Princeton Fusion Systems will develop prototype, high efficiency switching amplifiers using WBG SiC devices and amplifier boards that employ advanced cooling and digital control. The project will design, test, and qualify individual circuit boards as the building blocks for various short-pulse, long-pulse, and continuous-wave electrical-driver power supplies for fusion-energy systems.

Portable Diagnostic: from ORNL to PPPL

Our team is mentioned in this press release from ORNL about the “traveling” high-temperature plasma diagnostic they are building:

https://www.ornl.gov/news/ornl-team-builds-portable-diagnostic-fusion-experiments-shelf-items

The ORNL diagnostic team
The ORNL diagnostic team

ARPA-E is supporting the development of several such portable diagnostics in tandem with their other fusion efforts, including our OPEN project. The ORNL team hopes that their “suitcase Thomson scattering” diagnostic will be on its way to us this summer!

When installed, it will measure the electron temperature and density profiles in the PFRC-2 experiment as a function of radius, as often as once per millisecond. The profiles measured will allow us to probe the internal structure of the plasma, but beyond that will also allow us to better interpret the results of our other diagnostics!

Princeton Propeller Talk

Princeton Propeller is a series of talks supported by the Princeton Area Alumni Association (PA3) to showcase technical innovation. Our team was recently invited to give a talk on the new frontier of commercial fusion development! Dr. Swanson and Ms. Thomas took the podium on February 11, 2020, at the Quadrangle Club on Princeton’s campus.

Download our slides at this link:
“Frontiers in Commercializing Fusion Development” Slides

We are now joined by over a dozen private companies in the UK and the US pursuing commercial fusion development. Recent programs in the Department of Energy and their ARPA-E advanced projects division have supported teams in magneto-inertial confinement (ALPHA), compact tokamaks, pinches, and our PFRC (OPEN), and public-private partnerships between labs and the private companies (INFUSE). It’s a great time to be in fusion research!